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Overview of Part 2

• Synchronous Tree-Substitution Grammars (STSG).

– Illustrations, definitions,
– Tree-to-tree alignments by heuristics or EM,
– Beam-search decoding of STSG.

• Risks of data sparseness and back-off methods.

• Properties of the current version of my decoder.
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Synchronous Tree-Substitution Grammars (STSG)

• Introduced by Hajič et al. (2002) and formalized by Eisner (2003) and Čmejrek
(2006).

• Basic assumption when applied to MT: source and target sentences are
structurally parallel.
Not all training sentences are like that, because not all translations are literal enough.

• Generic model for non-isomorphic tree-to-tree transformation.
Can be applied at or across various layers:

Surface Layer

Analytical Layer

Tectogrammatical Layer

April 17, 2007 MT Marathon: Tree-based Translation 2



Idea: Observe a Pair of Dependency Trees

# Asociace uvedla , že domáćı poptávka v zá̌ŕı stoupla .
# Sb Pred AuxXAuxC Atr Sb AuxP Adv Pred AuxK

# The association said domestic demand grew in September .
# t NP VP t NP VP PP NP t
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Idea: Decompose Trees into Treelets

# Asociace uvedla , že domáćı poptávka v zá̌ŕı stoupla .
# Sb Pred AuxXAuxC Atr Sb AuxP Adv Pred AuxK

# The association said domestic demand grew in September .
# t NP VP t NP VP PP NP t
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Idea: Collect Dictionary of Treelet Pairs
Pred

Sb uvedla , že Pred

=
VP

NP said VP

Sb
asociace

=
NP

The association

Sb

Adj poptávka
=

NP

Adj demand

Adj
domáćı

=
t

domestic
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Little Trees Formally

Given a set of states Q and a set of word labels L, we define:

A little tree or treelet t is a tuple (V, V i, E, q, l, s) where: VP

NP said VP
• V is a set of nodes,

• V i ⊆ V is a nonempty set of internal nodes. The complement V f = V \V i

is called the set of frontier nodes,

• E ⊆ V i × V is a set of directed edges starting from internal nodes only and
forming a directed acyclic graph,

• q ∈ Q is the root state,

• l : V i → L is a function assigning labels to internal nodes,

• s : V f → Q is a function assigning states to frontier nodes.

Optionally, we can keep track of local or global ordering of nodes in treelets.

I depart from Čmejrek (2006) in a few details, most notably I require at least one internal node in each little tree.
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Treelet Pair Formally, Synch. Derivation

A treelet pair t1:2 is a tuple (t1, t2, m) where:

Sb

Adj poptávka
=

NP

t demand

• t1 and t2 are little trees for source and target languages (L1 and L2) and
states (Q1 and Q2),

• m is a 1-1 mapping of frontier nodes in t1 and t2.
Unlike Čmejrek (2006), I require all frontier nodes mapped, i.e. equal number of left and right frontier nodes.

From a starting synchronous state Start1:2 ∈ Q1 × Q2,
a synchronous derivation δ constructs a pair of dependency trees by:

• attaching treelet pairs t0
1:2

, . . . , tk
1:2

at corresponding frontier nodes, and

• ensuring that the root states q0

1:2
, . . . , qk

1:2
of the attached treelets pairs

t0
1:2

, . . . , tk
1:2

match the frontier states of the corresponding frontier nodes.

Can define probability of a derivation: p(δ) = p(t0
1:2

|Start1:2) ∗
∏k

i=1
p(tk

1:2
|qk

1:2
)
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Practical Issues

How big should the treelets be?

• The bigger, the better translation. × The bigger, the worse data sparseness.

• Currently, I consider all up to a certain size (e.g. 3 internals and 7 frontiers).

Given a pair of sentences (trees), how to learn treelet pairs?

• Heuristics similar to common phrase-extraction techniques:

– Obtain node-to-node(s) alignments.
Sometimes for free: Tectogrammatical layer contains links to analytical nodes.

Or use GIZA++ word alignments as node-alignments.

– Count all treelet pairs somehow compatible with word alignment.

• Expectation-maximization loop: Čmejrek (2006):

– Assume all possible/reasonable decompositions and alignments equally likely.
– Recalculate probabilities using corpus counts; iterate.
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Decoding STSG

Given an input dependency tree, in all possible ways: Find target tree

such that the

synch. derivation

δ is most likely.

• Decompose it into translatable treelets,
• Replace treelets by their translations,
• Join output treelets and produce output final tree (or string).

Implemented as top-down beam-search similar to Moses:

1. For input tree of k words, prepare translation options table:

2. For each source node, record τ -best possible target treelets.

3. Create stacks s0, . . . , sk to hold partial hypotheses, stack si for hyps covering i input nodes.

4. Insert initial hypothesis into s0.

5. for i ∈ 0 . . . k − 1

6. foreach hypothesis h ∈ si

7. Expand h by attaching one of possible translation options at a pair of pending frontiers,

8. extending the set of covered words and adding output words.

9. Insert the expanded h′ (j words covered) to sj, pruning sj to at most σ hyps.

10. Output top-scoring h∗ from sk.
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Translation Options Example

# The association said demand grew .

Sample translation options at root:

#
VP t

⇒ # Pred AuxK

#
VP

⇒ # Pred .

Sample translation options at ’said’:

NP
VP

VP

⇒ Sb uvedla , že Pred

Sample translation options at ’.’:

⇒ .
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Expanding Hypothesis Example

# The association said demand grew .

Sample Derivation:

h0 # ⇒ #

h1
#

VP
⇒ # Pred .

h2

#

NP VP

⇒ # Sb uvedla , že Pred .

h3

#

NP NP

⇒ # Sb uvedla , že Sb stoupla .

April 17, 2007 MT Marathon: Tree-based Translation 11



Risks of Data Sparseness (1)
Morphological richness:

• not an issue at a higher layer, where nodes hold lemmas.

Pred

Sb Adv stouplafem,sg

=
VP

NP grew PP
Pred

Sb Adv stouplmasc,sg

=
VP

NP grew PP
Pred

Sb Adv stouplimasc,pl

=
VP

NP grew PP
. . .
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Risks of Data Sparseness (2)
Frontiers for additional adjuncts, state labels for root and frontiers:

• Once a node is used as internal, all its children have to be included in the little
tree as internals or frontiers. (There is no adjunction in STSG.)

Pred

Sb stoupla

=

VP

NP grew

Pred

Sb Adv stoupla

=

VP

NP grew PP

Pred

Sb Adv Adv stoupla

=

VP

NP grew PP PP
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Risks of Data Sparseness (3)
Ordering of nodes:

• Czech has a relatively free word order, many permutations possible.

• Not an issue if we decide to leave the tricky part for someone else,
e.g. a tecto→analytical generator.

Pred

Sb stoupla Adv
=

VP

NP grew PP
Pred

Sb Adv stoupla
=

VP

NP grew PP

Pred

Adv stoupla Sb
=

VP

NP grew PP

Pred

Adv Sb stoupla
=

VP

NP grew PP
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Back-off Schemes

Preserve all. Full-featured treelets are collected in training phase.
Required treelets often never seen in training data ⇒ back-off needed.

Drop frontiers. Observed treelets reduced to internal nodes only.
Given a source treelet, internals translated by the dictionary, frontiers generated
on the fly, labelled and positioned probabilistically.

Keep a word non-translated to handle unknown words.
Allowed only for single-internal treelets, frontiers mapped probabilistically.

Transfer numeric expression, showing possibility to include hand-coded rules.

Adjoin on the fly like Quirk, Menezes, and Cherry (2005); not implemented.

Modular approach to back-off schemes, config says:

• which methods to use

• in which order, or whether more should be attempted at simultaneously.
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Current Experimental Setup

To allow for end-to-end BLEU evaluation, I mainly experiment with:

• analytical trees (treelets fully lexicalized with word forms, locally ordered),

• heuristic treelet dictionary extraction,

• target treelet structure disregarded (output linearized right away).

Features already supported:

• GDBM to store and access treelet tables (zero loading time).

• IrstLM to promote hypotheses containing frequent trigrams.

• MERT by Philipp Koehn (Och, 2003) or Smith and Eisner (2006).

Future:

• Tectogrammatical transfer, chain of transfers.

• Impact of EM training, input parse quality.
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Current Problems

• Search errors.
Input sentence of 35 words, stack size 200. The final best hypothesis (red) ranked as the

126th in stack 12.

• MERT won’t work with many search errors.

• Bad parses mislead translation ⇒ plan to allow uncertain input.

⇒ Currently terribly beaten by Moses.
(English→Czech BLEU 7 or 8 instead of 13)
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Summary

Bigger picture: MT model preserving dependency syntax:

• STSG can be used to model dependency tree-to-tree mapping.

• Linguistically motivated layers reduce sparseness.
(STSG is applicable at or across various layers: t→t, a→a, tcs→aen, ten→aen.)

• Heuristics or EM to obtain treelet pairs.

“Smaller” picture:

• Czech-English data available at various layers of annotation.

• A preliminary version of an STSG decoder.
Implemented in Mercury, a functional language compiled to C.

Sharable with all interested.

No public release yet, contact me directly. Eventually GPL’d.
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Additional Useful Links

bojar@ufal.mff.cuni.cz For all interested in collaboration.

More Czech-English Data http://ufal.mff.cuni.cz/czeng/

Czech is a challenge for anyone!

Mercury http://www.cs.mu.oz.au/research/mercury/

Pure, functional, (higher order), statically type- and mode-checked
⇒ If it compiles, it runs.
Compiled to plain C
⇒ seamless integration with C/C++ components; efficient.

April 17, 2007 MT Marathon: Tree-based Translation 19



References

Čmejrek, Martin. 2006. Using Dependency Tree Structure for Czech-English Machine Translation. Ph.D. thesis,
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